Targeting immune modulatory pathways in cancer

Critical hurdles on the way to successful cancer immunotherapy

- **Select**
 - Target antigens

- **Induce**
 - T cell response

- **Avoid**
 - Counter regulation

- **Support**
 - T cell Infiltration

- **Break**
 - Tumor cell Resistance

Succesful Cancer Immunotherapy

Prerequirements of successful tumor immune surveillance

- Systemic tumor –specific Teff response
- Immigration of TA specific Teff into tumor tissue
- In situ activity of TA specific T cells

in CRC TNF expression is confined to TCR stimulated TIL

TNF expression indicates TCR activation in TIL

In situ activity of TIL in CRC

TNF is expressed by extremely low numbers of TIL

0.2% of $CD4^{pos}$ and $CD8^{pos}$ TIL express TNF in situ

TNF in T cells correlates with total TNF

- **CD8 TC**
 - r^2: 0.77
 - $p<0.0001$

- **CD4 TC**
 - r^2: 0.65
 - $p<0.0001$

N= 36
TNF expression in CRC TILs

TNF expression is increased in CRC TILs

% TNF pos TIL in CRC patients

<table>
<thead>
<tr>
<th></th>
<th>CD8 TC</th>
<th>CD4 TC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mucosa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tumor</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TNF conc. in CRC

<table>
<thead>
<tr>
<th>tissue</th>
<th>TNFα pg/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mucosa</td>
<td></td>
</tr>
<tr>
<td>Tumor</td>
<td></td>
</tr>
</tbody>
</table>

20x magnification

in coop. with N. Halama

In situ activity of TIL is increased in patients with systemic anti tumor T cell response

detection of tumor specific T cell response

IFN-γ Elispot-Assay (representative CRC patient)

Representative CRC patient 1174 IFNγ Elispot

% TNF^{pos} TIL

CD4^{pos} TIL

CD8^{pos} TIL

systemic T A specific T cell response is required for intratumoral TC activity

N=26
In situ activity of TA specific TIL

TA-specific TCs are enriched in TIL

![Flow cytometry dot plots](image)

TA-spec. TIL

<table>
<thead>
<tr>
<th>Muc1</th>
<th>Her2/Neu</th>
<th>CEA</th>
<th>EGFR</th>
<th>p53</th>
<th>HPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>PT</td>
<td>Met</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

% TA spec. of CD8* TC

N=15

TA-spec. CD8* TC

<table>
<thead>
<tr>
<th>Tumor</th>
<th>PT</th>
<th>Met</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

% TA spec. of CD8* TC

40%

Reissfelder&Stamova, J. Clin. Invest., 2014
In situ activity of TIL is confined to TA-specific TCs

- **TIL**
 - CD3⁺CD8⁺
 - CD3⁺CD8⁺ pentamer⁺
 - PT: Red circle
 - Met: Blue circle
 - 40%

- **PB**
 - CD3⁺CD8⁺
 - CD3⁺CD8⁺ pentamer⁺
 - *

- **BM**
 - CD3⁺CD8⁺
 - CD3⁺CD8⁺ pentamer⁺
 - *

N=14

No correlation of in situ activity in TA specific TIL and PBTC

PB vs BM

- %TNFα⁺ of pentamer⁺ BMTC vs %TNFα⁺ of pentamer⁺ PBTC

- * p<0.002

PB/BM vs TIL

- %TNFα⁺ of pentamer⁺ PB/BMTC vs %TNFα⁺ of pentamer⁺ TIL

TA specificity is required for intratumoral TC activity
The impact of the immune system on cancer prognosis

TNF expression is a strong prognostic parameter in UICC stage III CRC

Cohort of 102 CRC patients
- collected >10 years ago
- retrospectively assessed for:
 - TC infiltration
 - TC activity in situ (TNF)
 - Treg
 - mast cells

multivariate analysis

<table>
<thead>
<tr>
<th>Tumor related death</th>
<th>HR*</th>
<th>95% CI</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD 4+</td>
<td>0.95</td>
<td>(0.78, 1.15)</td>
<td>0.60</td>
</tr>
<tr>
<td>CD 8+</td>
<td>1.00</td>
<td>(1.00, 1.01)</td>
<td>0.32</td>
</tr>
<tr>
<td>Treg</td>
<td>0.62</td>
<td>(0.39, 0.99)</td>
<td>0.05</td>
</tr>
<tr>
<td>Mast cell</td>
<td>0.99</td>
<td>(0.96, 1.02)</td>
<td>0.40</td>
</tr>
<tr>
<td>TNFα</td>
<td>0.28</td>
<td>(0.08, 0.95)</td>
<td>0.04</td>
</tr>
</tbody>
</table>

In situ activity of tumor specific T cells determines colorectal cancer prognosis

A. Benner, DKFZ
Critical hurdles for T cell mediated immune surveillance in CRC

- Systemic TC response
- TC infiltration
- TC activity in situ

Successful:
- 40% anergic tumor vasculature

Unsuccessful:
- 40% Local immune suppression/Immune modulatory ligands
- app.6% successful immune protection
The problem of vascular anergy
Local Low Dose Irradiation Increases Effector T Cell Infiltration through INOS+ Macrophages

Objective: Modify Tumour Vasculature to Prevent T Cell Recruitment and Improve Teff Immigration

The riptag-5 mouse model of spontaneous insulinoma - a model of vascular anergy

...based on tg rat insulin promotor driven oncogene SV40 large T antigen

RIP-Tag mouse model of spontaneous insulinoma

Local low dose irradiation
Tumor specific TCRtg donor T cells

Treatment protocol:
- Irradiation
- ADI
- Tumor tissue analysis

<6Gy

Ganss et al., Cancer Res., 2002
Low dose irradiation + T cell transfer cause vascular normalization + activation

CD8 T cell transfer

0 Gy 2 Gy

CD31+ vessel – phenotype

activation (VCAM-1)

T cell survival (%)

CD8 T cell transfer

Irradiation (Gy)

0 0.5 1 2 6

weeks

survival (%)

2GY + CD8
CD8
2 Gy
untreated
Indispensable role of macrophages in T cell recruitment

CD8 T cell transfer

- T cells / 0.5 mm²
- Irradiation (Gy) 0, 2, 2
- CLIP, PLIP

Macrophage depletion by clodronate liposomes

- 0 Gy
- 2Gy+CD8
- CLIP

Survival (%)

- untreated
- 2Gy + CD8 + CLIP
- 2Gy + CD8 + PLIP
- CLIP only

* p<0.01
Local Low Dose Irradiation Increases Effector T Cell Infiltration through INOS+ Macrophages

% iNOS+CD11b+ in RT5 tumors

vascular activation

CD8 T cell transfer

- CD3+
- CD8+
- CD4+
Effector T-cell Recruitment through iNOS+/M1 macrophages

Low dose irradiation

Tumor
- CCL2, CCL-20
- VEGF, IL-6
- Dis Tu C
- VCAM
- RANTES
- iNOS
- IL-
- TAM
- Normalized vasculature
- VEGF
Two clinical trials launched in 2010

2 Randomized controlled phase I/II studies to investigate T cell infiltration after neoadjuvant local low dose radiotherapy in

- Locally advanced operable pancreatic cancer
- Single, operable liver metastases of colorectal cancer

Automated full slide imaging:
Niels Halama & Dirk Jäger, NCT, Heidelberg
CTL-A4 and PD1/PDL-1 are major targets for cancer immunotherapy

B7 family of immune modulatory molecules and their inhibitory receptors on T cells

PD-L1

- **Immune modulatory ligands**
 - Extracellular PD-L1
 - CD80, CD86, B7-H1, B7-DC

- **Inhibitory receptors**
 - CTLA4, PD1

T cell exhaustion

Loss of function

T cell Apoptosis

Immune suppressive cytokines

Regulatory T cell

Molecular shield

Protected from cytotoxic lysis

Are there more immune regulatory ligands?

PDL1 not expressed on all tumors treatment failure despite PDL1 expression

Ligand or receptor inhibition through blocking antibodies restores T cell activity against tumor cells

adapted from Nature Reviews Immunology
Targeting immune modulatory pathways in cancer

A high-throughput siRNA based Screen for novel immune modulators on tumor cells

Test principle

Khandelwal et al., EMBO Mol Med 2015
High-throughput RNAi screen with syngenic TILs and melanoma cells; 1,500 genes

Data Analysis

Replicate 2
Replicate 1
Hit Selection

Candidate Validation:
- Re-tests
- Secondary Assays

Khandelwal et al., EMBO Mol Med 2015
Targeting immune modulatory pathways in cancer

Screen performance

Target Identification

Khandelwal et al., EMBO Mol Med, 2015
• Low z-score: Potential immune-stimulatory molecule
• High z-score: Potential immune-inhibitory molecule

Khandelwal et al., EMBO Mol Med, 2015
CCR9 knock down in tumor cells increases function of TA-specific T cells

CCR9 blocks TNF secretion

CCR9 blocks STAT activation

CCR9 blocks granzyme B secretion

Khandelwal et al., EMBO Mol Med 2015
CCR9 knock down in tumor cells increases function of TA-specific T cells

Tumor lysis

- Control siRNA
- CCR9 siRNA 1

% specific lysis

Survivin T cell : MDA MR 231

- Control vector
- CCR9 vector

% specific lysis

Survivin T cell : MCF7

- CCR9+ M579-A2 + TIL 209
- CCR9- M579-A2 + TIL 209

Tumor volume (mm³)

p = 0.007

days after tumor implantation

- CCR9+ M579-A2
- CCR9- M579-A2

days after tumor cell injection

Khandelwal et al., EMBO Mol Med 2015
The bone marrow: a site for induction of tumor specific T cells

Feuerer & Beckhove et al., Nat. Med. 2003:1151-7
Feuerer & Beckhove et al., Nat. Med. 2001:7:452-8

Schmitz-Winnenthal et al., Gastroenterology, 2010:138:1178-88
Schmitz-Winnenthal et al., Cancer Res., 2006:65:10079-87
Choi et al., Blood, 2005, 105:2132-4

<table>
<thead>
<tr>
<th>Entity</th>
<th>n</th>
<th>TA reactive (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breast Ca.</td>
<td>450</td>
<td>60%</td>
</tr>
<tr>
<td>Pancreatic Ca.</td>
<td>180</td>
<td>80%</td>
</tr>
<tr>
<td>HNSCC</td>
<td>150</td>
<td>40%</td>
</tr>
<tr>
<td>Colorektal Ca.</td>
<td>250</td>
<td>40%</td>
</tr>
<tr>
<td>Malignant Melanoma</td>
<td>80</td>
<td>50%</td>
</tr>
<tr>
<td>Multiple myeloma</td>
<td>140</td>
<td>42%</td>
</tr>
<tr>
<td>Glioblastoma</td>
<td>250</td>
<td>38%</td>
</tr>
<tr>
<td></td>
<td>1500</td>
<td>50%</td>
</tr>
</tbody>
</table>