The 4-1BB (CD137) Costimulatory Pathway as a Therapeutic Target

Marlon Hinner, Director Immuno-oncology, Pieris Pharmaceuticals Inc. Immune Checkpoint Inhibitors, November 17th 2016
Forward Looking Statements

Statements in this presentation that are not descriptions of historical facts are forward-looking statements that are based on management’s current expectations and assumptions and are subject to risks and uncertainties. In some cases, you can identify forward-looking statements by terminology including “anticipates,” “believes,” “can,” “continue,” “could,” “estimates,” “expects,” “intends,” “may,” “plans,” “potential,” “predicts,” “projects,” “should,” “will,” “would” or the negative of these terms or other comparable terminology. Factors that could cause actual results to differ materially from those currently anticipated include, without limitation, risks relating to the results of our research and development activities, including uncertainties relating to the discovery of potential drug candidates and the preclinical and clinical testing of our drug candidates; the early stage of our drug candidates presently under development; our ability to obtain and, if obtained, maintain regulatory approval of our current drug candidates and any of our other future drug candidates; our need for substantial additional funds in order to continue our operations and the uncertainty of whether we will be able to obtain the funding we need; our future financial performance; our ability to retain or hire key scientific or management personnel; our ability to protect our intellectual property rights that are valuable to our business, including patent and other intellectual property rights; our dependence on third-party manufacturers, suppliers, research organizations, testing laboratories and other potential collaborators; our ability to successfully market and sell our drug candidates in the future as needed; the size and growth of the potential markets for any of our approved drug candidates, and the rate and degree of market acceptance of any of our approved drug candidates; developments and projections relating to our competitors and our industry; our ability to establish collaborations; our expectations regarding the time which we will be an emerging growth company under the JOBS Act; our use of proceeds from this offering; regulatory developments in the U.S. and foreign countries; and other factors that are described more fully in our Annual Report on form 10-K filed with the SEC on March 23, 2016. In light of these risks, uncertainties and assumptions, the forward-looking statements regarding future events and circumstances discussed in this report may not occur and actual results could differ materially and adversely from those anticipated or implied in the forward-looking statements. You should not rely upon forward-looking statements as predictions of future events. The forward-looking statements included in this presentation speak only as of the date hereof, and except as required by law, we undertake no obligation to update publicly any forward-looking statements for any reason after the date of this presentation to conform these statements to actual results or to changes in our expectations.
Factors determining T cell antitumor responses

- TCR/MHC interaction triggers T cell activation
- Co-inhibitory receptor/ligand interactions limit magnitude and duration of immune response
- Co-stimulatory receptor/ligand interactions enhance magnitude and duration of immune response
- Therapeutic targeting of co-inhibition is straightforward: simple antagonism: anti-CTLA-4 and anti-PD-1 mAbs show impressive clinical results
- Therapeutic exploitation of (co-)stimulation is complex
 - High efficacy at low toxicity not yet achieved for costimulatory immune receptor agonists

Differences and Commonalities in the TNFR Costimulatory Family

- TNF receptor family and TNFR ligands highly relevant for costimulation on lymphocytes, especially T cells
- Other family members also relevant in immunology
- Differences between TNFR family members
 - Expression of receptor (e.g. CD4/CD8 T cells, T reg, NK, APC)
 - Expression of ligand (e.g. T cells, various APC)
 - Downstream signaling
- Activation of costimulatory TNFR on effector lymphocytes enhances their
 - Proliferation and survival
 - Proinflammatory cytokine production
 - Cytotoxic function
 - Memory formation

→ Universal importance of TNFR family in immunology makes it an attractive target class

4-1BB (CD137) is a preclinically validated target with clinical pathway validation

- **4-1BB profile**
 - Expressed on activated CD4+ and CD8+ T cells, activated B cells, and NK cells
 - The only known ligand 4-1BBL is expressed on various types of antigen-presenting cells
 - 4-1BB activation leads to strong costimulation of TCR-activated T cells

- **4-1BB targeting leads to tumor rejection in mouse models**
 - Forced expression of 4-1BBL on tumor
 - Forced expression of an anti-4-1BB scFv on tumor
 - Systemic anti-4-1BB antibody (retardation of tumor growth)

- **Human clinical data supports relevance of 4-1BB**
 - 4-1BB is a validated marker for tumor-reactive T cells in man
 - Anti-4-1BB mAbs improve expansion of CD8+ melanoma TIL in adoptive T cell therapy
 - 4-1BB downstream signaling is key to success in clinical CAR-T
 - 4-1BB expression is localized in the tumor microenvironment

- **Tumor-targeted T cell engagement via 4-1BB has been demonstrated using aptamer technology**

General Mechanism of Co-stimulation by TNFR such as 4-1BB

- TNFR family receptors require clustering for activation
- Soluble ligands are usually not sufficient to activate TNFR family receptors
- Without further clustering, bivalent mAbs are also not sufficient to activate

Mechanism of TNFR activation supports tumor-target based activation approach
Concept: Tumor-localized Co-stimulation with Bispecific 4-1BB Engager

- **No activation**

- **Clustering**
 - 4-1BB is activated via higher order clustering
 - Tumor receptor mediated clustering of bispecifics drives 4-1BB-mediated T cell activation
 - Maintained tumor antigen specificity by T cell receptor leading to potential safety advantages

- **Activation**

- **No T cell costimulation in periphery**
 - No T cell costimulation in periphery

- **T cell costimulation in tumor**
 - T cell costimulation in tumor
The Anticalin Platform as the Basis for Fit-For-Purpose Costimulatory Bispecifics

- **Anticalins** are a novel class of protein therapeutics, proprietary to Pieris, with several degrees of validation.
- Human data demonstrating desired drug-like properties:
 - 26 solid tumor patients with VEGF-A antagonist
 - 36 healthy volunteers with hepcidin antagonist
- Proven track record for successful collaborations with Pharma:
 - Roche
 - Sanofi
 - Daiichi-Sankyo
 - Allergan
 - Zydus
 - Stelis Biopharma
Anticalins are a Novel Class of Therapeutic Binding Proteins

- Anticalins® are derived from lipocalins – human extracellular binding proteins
- Small (18 kDa vs 150 kDa mAbs), high selectivity and potency

Anticalins Have Been Generated Against a Broad Range of Targets

- Anticalin in complex with a small molecule (Y-DTPA)
- Anticalin bound to the hepcidin peptide
- Anticalin bound to the CTLA4 protein

Human lipocalin
Red = key areas of target engagement
Anticalin-Based Drug Candidates Can Be Tailored to Multiple Formats

Potent Multi-target Engagement | Novel MoA | Excellent Drug-like Properties
PRS-343: HER2 Targeted 4-1BB Activation

4-1BB (CD137) – Key TNFR Family Costimulatory Target
- Marker for tumor-specific T cells in TME
- Pathway clinically validated in CAR-T and ACT
- Strong preclinical validation in mouse tumor models (forced ligand expression, mAb therapy)
- Critical for sustained T cell survival and activity

HER2 – Strongly Validated Tumor Target
- Restricted expression on normal tissue
- Differential expression supports PRS-343 drug trafficking and cross-linking at the tumor bed
- Multiple HER2+ tumors with high-unmet need
 - Breast, Gastric, Esophageal, Bladder, Ovarian, Endometrial, Lung (AdenoCa), Biliary, Salivary Duct
PRS-343 was chosen from multiple variants generated by versatile platform

4-1BB-targeting Anticalin
- Affinity 2nM (SPR)
- Non-competitive mode of binding
- Activates 4-1BB only when coated/clustered

HER2-targeting: engineered trastuzumab
- Engineered IgG4 backbone
- FcgR-interaction nearly eliminated

Selection criteria:
- Target binding (in vitro and FACS)
- FcgR and FcRn interaction
- Plasma and storage stability
- Mouse and cynomolgus monkey PK
- Ex vivo T cell activation
- Activity in tumor models in vivo

- PRS-343 was selected from multiple variants
- All variants showed retained target binding and excellent drug-like behavior
- Key selection criterion was activity in ex vivo T cell activation and mouse tumor model
PRS-343 Leads to T cell Costimulation - Bispecific Geometry is Crucial

4-1BB/HER2 bispecific variants induce T cell activation with different potency, demonstrating the importance of bispecific geometry.
T Cell Activation is HER2 Target-Dependent

Addition of excess HER2-targeting trastuzumab prevents binding of 4-1BB/HER2 bispecifics to HER2-positive cells and results in a loss of activity, confirming mode of action.
PRS-343 Activates 4-1BB in Tumor Target-dependent Manner, Distinct From Benchmark Antibodies

- PRS-343 selectively activates T cells in the presence of HER2-high cells
- This mode of action is markedly different to 4-1BB-targeting benchmark 1
- 4-1BB targeting benchmark 2 shows no activity, highlighting the need for higher order clustering
- Mode of action supports low expected toxicity against healthy cells
PRS-343 Tested in SK-OV-3 Humanized Mouse Model – Experimental Protocol

Groups
- PBMC control
- Vehicle control
- Isotype control
- PRS-343 (200µg)
- PRS-343 (100µg)
- PRS-343 (20µg)
- PRS-343 (4µg)
- Tras-IgG4
- Anti-4-1BB benchmark (100µg)

Tumor engraft (s.c.)
PBMC engraft (2 donors) D0 (i.v.)
TIL analysis (IHC of tumors) D20

Readouts
- Tumor size
- Body weight
- Survival
- Lymphocyte phenotyping at study end
- For select animals: HE & CD45 IHC

Notes
- Immune-compromised NOG mice
- Tumor size at day of PBMC engraftment: approx 120 mm³
PRS-343 shows bifunctional activity – dose-dependent tumor growth inhibition & CD8(+)TIL expansion in SK-OV-3 model

- PRS-343 shows dose-dependent tumor growth inhibition, which is dominated by anti-HER2 activity
- PRS-343 leads to strong and dose-dependent lymphocyte infiltration in tumors; monospecific anti-HER2 mAb (IgG4 backbone) lacks this activity
- Monospecific anti-4-1BB benchmark mAb shows insignificant response compared to isotype control and no significant tumor infiltration of lymphocytes

Tumor growth (Median)

- no PBMC
- PBMC only
- Anti-CD137 100µg
- Isotype ctrl 100µg
- PRS-343 4µg
- PRS-343 20µg
- Tras-IgG4 80µg

TIL frequency (hCD45)

- Incomplete group due to mortality
Anti-4-1BB mAb (but not PRS-343) Expands Peripheral Lymphocytes and accelerates GvHD

- Anti-4-1BB benchmark mAb shows accelerated GvHD with significant mortality at day 20 in line with literature data
- Toxicity corresponds with expansion of CD8-positive T cells in PBMC for this group

1 GvHD = graft vs host disease
2 Sanmamed et al., Cancer Res. 2015 Sep 1;75(17):3466-78.
PRS-343: Excellent drug-like properties

- Full plasma stability
 - Fully active after 1 week in human and mouse plasma at 37°C (0.5mg/mL)

- Excellent storage stability
 - Fully stable and active after 4 weeks at 40°C in PBS (20mg/mL)

- Antibody-like half-life in mice and cynomolgus monkey
 - Half-life similar to trastuzumab in mice (10mg/kg) and cyno (3mg/kg)

- Low Immunogenicity Risk
 - According to in vitro T cell immunogenicity experiment (Epibase, Lonza)

- Good manufacturability
 - High titer expression up to 4 g/L in established CMC process
Summary

- Immunostimulation requires bispecifics for **efficacy**
 - 4-1BB/HER2 bispecific PRS-343 shows strong tumor-localized T cell activation in vivo
 - Anti-4-1BB benchmark activates T cells in periphery but not in the tumor

- Immunostimulation requires bispecifics for **safety**
 - Systemic activation of 4-1BB by anti-4-1BB mAb leads to increased toxicity in vivo

- Pieris bispecifics platform generates fit-for-purpose multispecifics
 - Flexible geometry, valency and affinity
 - Excellent drug-like properties: stability, PK, immunogenicity, manufacturability
 - Tailor-made drugs for cancer immunotherapeutics and other indications

- PRS-343 is advancing to the clinic based on excellent preclinical POC
 - IND-enabling studies progressing
 - First-in-patient trial in HER2-positive solid tumors unresponsive to SOC in H1 2017

- Multispecific costimulatory approach broadly applicable to multiple tumor targets and costimulatory receptors – 2nd disclosed program PRS-342 (4-1BB/GPC-3 bispecific)
Pieris Pharmaceuticals, Inc.
255 State Street
Boston, MA 02109
USA
info@pieris.com

Pieris Pharmaceuticals GmbH
Lise-Meitner-Strasse 30
85354 Freising (Munich)
Germany
info@pieris.com